What is a Computer Network?

What is a Computer Network?

  • Computer Network is a group of computers connected with each other through wires, optical fibres or optical links so that various devices can interact with each other through a network.
  • The aim of the computer network is the sharing of resources among various devices.
  • In the case of computer network technology, there are several types of networks that vary from simple to complex level.

Components Of Computer Network:

Computer Network Introduction

Major components of a computer network are:

NIC(National interface card)

NIC is a device that helps the computer to communicate with another device. The network interface card contains the hardware addresses, the data-link layer protocol use this address to identify the system on the network so that it transfers the data to the correct destination.

There are two types of NIC: wireless NIC and wired NIC.

  • Wireless NIC: All the modern laptops use the wireless NIC. In Wireless NIC, a connection is made using the antenna that employs the radio wave technology.
  • Wired NIC: Cables use the wired NIC to transfer the data over the medium.

Hub

Hub is a central device that splits the network connection into multiple devices. When computer requests for information from a computer, it sends the request to the Hub. Hub distributes this request to all the interconnected computers.


Switches

Switch is a networking device that groups all the devices over the network to transfer the data to another device. A switch is better than Hub as it does not broadcast the message over the network, i.e., it sends the message to the device for which it belongs to. Therefore, we can say that switch sends the message directly from source to the destination.


Cables and connectors

Cable is a transmission media that transmits the communication signals. There are three types of cables:

  • Twisted pair cable: It is a high-speed cable that transmits the data over 1Gbps or more.
  • Coaxial cable: Coaxial cable resembles like a TV installation cable. Coaxial cable is more expensive than twisted pair cable, but it provides the high data transmission speed.
  • Fibre optic cable: Fibre optic cable is a high-speed cable that transmits the data using light beams. It provides high data transmission speed as compared to other cables. It is more expensive as compared to other cables, so it is installed at the government level.

Router

Router is a device that connects the LAN to the internet. The router is mainly used to connect the distinct networks or connect the internet to multiple computers.


Modem

Modem connects the computer to the internet over the existing telephone line. A modem is not integrated with the computer motherboard. A modem is a separate part on the PC slot found on the motherboard.


Uses Of Computer Network

  • Resource sharing: Resource sharing is the sharing of resources such as programs, printers, and data among the users on the network without the requirement of the physical location of the resource and user.
  • Server-Client model: Computer networking is used in the server-client model. A server is a central computer used to store the information and maintained by the system administrator. Clients are the machines used to access the information stored in the server remotely.
  • Communication medium: Computer network behaves as a communication medium among the users. For example, a company contains more than one computer has an email system which the employees use for daily communication.
  • E-commerce: Computer network is also important in businesses. We can do the business over the internet. For example, amazon.com is doing their business over the internet, i.e., they are doing their business over the internet.


Computer Network Types

A computer network is a group of computers linked to each other that enables the computer to communicate with another computer and share their resources, data, and applications.

A computer network can be categorized by their size. A computer network is mainly of four types:

Computer Network Types
  • LAN(Local Area Network)
  • PAN(Personal Area Network)
  • MAN(Metropolitan Area Network)
  • WAN(Wide Area Network)

LAN(Local Area Network)

  • Local Area Network is a group of computers connected to each other in a small area such as building, office.
  • LAN is used for connecting two or more personal computers through a communication medium such as twisted pair, coaxial cable, etc.
  • It is less costly as it is built with inexpensive hardware such as hubs, network adapters, and ethernet cables.
  • The data is transferred at an extremely faster rate in Local Area Network.
  • Local Area Network provides higher security.
Computer Network Types

PAN(Personal Area Network)

  • Personal Area Network is a network arranged within an individual person, typically within a range of 10 meters.
  • Personal Area Network is used for connecting the computer devices of personal use is known as Personal Area Network.
  • Thomas Zimmerman was the first research scientist to bring the idea of the Personal Area Network.
  • Personal Area Network covers an area of 30 feet.
  • Personal computer devices that are used to develop the personal area network are the laptop, mobile phones, media player and play stations.
Computer Network Types

There are two types of Personal Area Network:

Computer Network Types
  • Wired Personal Area Network
  • Wireless Personal Area Network

Wireless Personal Area Network: Wireless Personal Area Network is developed by simply using wireless technologies such as WiFi, Bluetooth. It is a low range network.

Wired Personal Area Network: Wired Personal Area Network is created by using the USB.

Examples Of Personal Area Network:

  • Body Area Network: Body Area Network is a network that moves with a person. For example, a mobile network moves with a person. Suppose a person establishes a network connection and then creates a connection with another device to share the information.
  • Offline Network: An offline network can be created inside the home, so it is also known as a home network. A home network is designed to integrate the devices such as printers, computer, television but they are not connected to the internet.
  • Small Home Office: It is used to connect a variety of devices to the internet and to a corporate network using a VPN

MAN(Metropolitan Area Network)

  • A metropolitan area network is a network that covers a larger geographic area by interconnecting a different LAN to form a larger network.
  • Government agencies use MAN to connect to the citizens and private industries.
  • In MAN, various LANs are connected to each other through a telephone exchange line.
  • The most widely used protocols in MAN are RS-232, Frame Relay, ATM, ISDN, OC-3, ADSL, etc.
  • It has a higher range than Local Area Network(LAN).
Computer Network Types

Uses Of Metropolitan Area Network:

  • MAN is used in communication between the banks in a city.
  • It can be used in an Airline Reservation.
  • It can be used in a college within a city.
  • It can also be used for communication in the military.

WAN(Wide Area Network)

  • A Wide Area Network is a network that extends over a large geographical area such as states or countries.
  • A Wide Area Network is quite bigger network than the LAN.
  • A Wide Area Network is not limited to a single location, but it spans over a large geographical area through a telephone line, fibre optic cable or satellite links.
  • The internet is one of the biggest WAN in the world.
  • A Wide Area Network is widely used in the field of Business, government, and education.
Computer Network Types

Examples Of Wide Area Network:

  • Mobile Broadband: A 4G network is widely used across a region or country.
  • Last mile: A telecom company is used to provide the internet services to the customers in hundreds of cities by connecting their home with fiber.
  • Private network: A bank provides a private network that connects the 44 offices. This network is made by using the telephone leased line provided by the telecom company.

Advantages Of Wide Area Network:

Following are the advantages of the Wide Area Network:

  • Geographical area: A Wide Area Network provides a large geographical area. Suppose if the branch of our office is in a different city then we can connect with them through WAN. The internet provides a leased line through which we can connect with another branch.
  • Centralized data: In case of WAN network, data is centralized. Therefore, we do not need to buy the emails, files or back up servers.
  • Get updated files: Software companies work on the live server. Therefore, the programmers get the updated files within seconds.
  • Exchange messages: In a WAN network, messages are transmitted fast. The web application like Facebook, Whatsapp, Skype allows you to communicate with friends.
  • Sharing of software and resources: In WAN network, we can share the software and other resources like a hard drive, RAM.
  • Global business: We can do the business over the internet globally.
  • High bandwidth: If we use the leased lines for our company then this gives the high bandwidth. The high bandwidth increases the data transfer rate which in turn increases the productivity of our company.

Disadvantages of Wide Area Network:

The following are the disadvantages of the Wide Area Network:

  • Security issue: A WAN network has more security issues as compared to LAN and MAN network as all the technologies are combined together that creates the security problem.
  • Needs Firewall & antivirus software: The data is transferred on the internet which can be changed or hacked by the hackers, so the firewall needs to be used. Some people can inject the virus in our system so antivirus is needed to protect from such a virus.
  • High Setup cost: An installation cost of the WAN network is high as it involves the purchasing of routers, switches.
  • Troubleshooting problems: It covers a large area so fixing the problem is difficult.

Internetwork

  • An internetwork is defined as two or more computer network LANs or WAN or computer network segments are connected using devices, and they are configured by a local addressing scheme. This process is known as internetworking.
  • An interconnection between public, private, commercial, industrial, or government computer networks can also be defined as internetworking.
  • An internetworking uses the internet protocol.
  • The reference model used for internetworking is Open System Interconnection(OSI).

Types Of Internetwork:

1. Extranet: An extranet is a communication network based on the internet protocol such as Transmission Control protocol and internet protocol. It is used for information sharing. The access to the extranet is restricted to only those users who have login credentials. An extranet is the lowest level of internetworking. It can be categorized as MANWAN or other computer networks. An extranet cannot have a single LAN, atleast it must have one connection to the external network.

2. Intranet: An intranet is a private network based on the internet protocol such as Transmission Control protocol and internet protocol. An intranet belongs to an organization which is only accessible by the organization's employee or members. The main aim of the intranet is to share the information and resources among the organization employees. An intranet provides the facility to work in groups and for teleconferences.

Intranet advantages:

  • Communication: It provides a cheap and easy communication. An employee of the organization can communicate with another employee through email, chat.
  • Time-saving: Information on the intranet is shared in real time, so it is time-saving.
  • Collaboration: Collaboration is one of the most important advantage of the intranet. The information is distributed among the employees of the organization and can only be accessed by the authorized user.
  • Platform independency: It is a neutral architecture as the computer can be connected to another device with different architecture.
  • Cost effective: People can see the data and documents by using the browser and distributes the duplicate copies over the intranet. This leads to a reduction in the cost.

Features Of Computer network

Features of Computer Network

A list Of Computer network features is given below.

  • Communication speed
  • File sharing
  • Back up and Roll back is easy
  • Software and Hardware sharing
  • Security
  • Scalability
  • Reliability

Communication speed

Network provides us to communicate over the network in a fast and efficient manner. For example, we can do video conferencing, email messaging, etc. over the internet. Therefore, the computer network is a great way to share our knowledge and ideas.


File sharing

File sharing is one of the major advantage of the computer network. Computer network provides us to share the files with each other.


Back up and Roll back is easy

Since the files are stored in the main server which is centrally located. Therefore, it is easy to take the back up from the main server.


Software and Hardware sharing

We can install the applications on the main server, therefore, the user can access the applications centrally. So, we do not need to install the software on every machine. Similarly, hardware can also be shared.


Security

Network allows the security by ensuring that the user has the right to access the certain files and applications.


Scalability

Scalability means that we can add the new components on the network. Network must be scalable so that we can extend the network by adding new devices. But, it decreases the speed of the connection and data of the transmission speed also decreases, this increases the chances of error occurring. This problem can be overcome by using the routing or switching devices.


Reliability

Computer network can use the alternative source for the data communication in case of any hardware failure.



What is Topology?

Topology defines the structure of the network of how all the components are interconnected to each other. There are two types of topology: physical and logical topology.

Physical topology is the geometric representation of all the nodes in a network.

Computer Network Topologies


Bus Topology

Computer Network Topologies

  • The bus topology is designed in such a way that all the stations are connected through a single cable known as a backbone cable.
  • Each node is either connected to the backbone cable by drop cable or directly connected to the backbone cable.
  • When a node wants to send a message over the network, it puts a message over the network. All the stations available in the network will receive the message whether it has been addressed or not.
  • The bus topology is mainly used in 802.3 (ethernet) and 802.4 standard networks.
  • The configuration of a bus topology is quite simpler as compared to other topologies.
  • The backbone cable is considered as a "single lane" through which the message is broadcast to all the stations.
  • The most common access method of the bus topologies is CSMA (Carrier Sense Multiple Access).

CSMA: It is a media access control used to control the data flow so that data integrity is maintained, i.e., the packets do not get lost. There are two alternative ways of handling the problems that occur when two nodes send the messages simultaneously.



  • CSMA CD: CSMA CD (Collision detection) is an access method used to detect the collision. Once the collision is detected, the sender will stop transmitting the data. Therefore, it works on "recovery after the collision".
  • CSMA CA: CSMA CA (Collision Avoidance) is an access method used to avoid the collision by checking whether the transmission media is busy or not. If busy, then the sender waits until the media becomes idle. This technique effectively reduces the possibility of the collision. It does not work on "recovery after the collision".

Advantages of Bus topology:

  • Low-cost cable: In bus topology, nodes are directly connected to the cable without passing through a hub. Therefore, the initial cost of installation is low.
  • Moderate data speeds: Coaxial or twisted pair cables are mainly used in bus-based networks that support upto 10 Mbps.
  • Familiar technology: Bus topology is a familiar technology as the installation and troubleshooting techniques are well known, and hardware components are easily available.
  • Limited failure: A failure in one node will not have any effect on other nodes.

Disadvantages of Bus topology:

  • Extensive cabling: A bus topology is quite simpler, but still it requires a lot of cabling.
  • Difficult troubleshooting: It requires specialized test equipment to determine the cable faults. If any fault occurs in the cable, then it would disrupt the communication for all the nodes.
  • Signal interference: If two nodes send the messages simultaneously, then the signals of both the nodes collide with each other.
  • Reconfiguration difficult: Adding new devices to the network would slow down the network.
  • Attenuation: Attenuation is a loss of signal leads to communication issues. Repeaters are used to regenerate the signal.

Ring Topology

Computer Network Topologies

  • Ring topology is like a bus topology, but with connected ends.
  • The node that receives the message from the previous computer will retransmit to the next node.
  • The data flows in one direction, i.e., it is unidirectional.
  • The data flows in a single loop continuously known as an endless loop.
  • It has no terminated ends, i.e., each node is connected to other node and having no termination point.
  • The data in a ring topology flow in a clockwise direction.
  • The most common access method of the ring topology is token passing.
    • Token passing: It is a network access method in which token is passed from one node to another node.
    • Token: It is a frame that circulates around the network.

Working of Token passing

  • A token moves around the network, and it is passed from computer to computer until it reaches the destination.
  • The sender modifies the token by putting the address along with the data.
  • The data is passed from one device to another device until the destination address matches. Once the token received by the destination device, then it sends the acknowledgment to the sender.
  • In a ring topology, a token is used as a carrier.

Advantages of Ring topology:

  • Network Management: Faulty devices can be removed from the network without bringing the network down.
  • Product availability: Many hardware and software tools for network operation and monitoring are available.
  • Cost: Twisted pair cabling is inexpensive and easily available. Therefore, the installation cost is very low.
  • Reliable: It is a more reliable network because the communication system is not dependent on the single host computer.

Disadvantages of Ring topology:

  • Difficult troubleshooting: It requires specialized test equipment to determine the cable faults. If any fault occurs in the cable, then it would disrupt the communication for all the nodes.
  • Failure: The breakdown in one station leads to the failure of the overall network.
  • Reconfiguration difficult: Adding new devices to the network would slow down the network.
  • Delay: Communication delay is directly proportional to the number of nodes. Adding new devices increases the communication delay.

Star Topology

Computer Network Topologies

  • Star topology is an arrangement of the network in which every node is connected to the central hub, switch or a central computer.
  • The central computer is known as a server, and the peripheral devices attached to the server are known as clients.
  • Coaxial cable or RJ-45 cables are used to connect the computers.
  • Hubs or Switches are mainly used as connection devices in a physical star topology.
  • Star topology is the most popular topology in network implementation.

Advantages of Star topology

  • Efficient troubleshooting: Troubleshooting is quite efficient in a star topology as compared to bus topology. In a bus topology, the manager has to inspect the kilometers of cable. In a star topology, all the stations are connected to the centralized network. Therefore, the network administrator has to go to the single station to troubleshoot the problem.
  • Network control: Complex network control features can be easily implemented in the star topology. Any changes made in the star topology are automatically accommodated.
  • Limited failure: As each station is connected to the central hub with its own cable, therefore failure in one cable will not affect the entire network.
  • Familiar technology: Star topology is a familiar technology as its tools are cost-effective.
  • Easily expandable: It is easily expandable as new stations can be added to the open ports on the hub.
  • Cost effective: Star topology networks are cost-effective as it uses inexpensive coaxial cable.
  • High data speeds: It supports a bandwidth of approx 100Mbps. Ethernet 100BaseT is one of the most popular Star topology networks.

Disadvantages of Star topology

  • A Central point of failure: If the central hub or switch goes down, then all the connected nodes will not be able to communicate with each other.
  • Cable: Sometimes cable routing becomes difficult when a significant amount of routing is required.

Tree topology

Computer Network Topologies

  • Tree topology combines the characteristics of bus topology and star topology.
  • A tree topology is a type of structure in which all the computers are connected with each other in hierarchical fashion.
  • The top-most node in tree topology is known as a root node, and all other nodes are the descendants of the root node.
  • There is only one path exists between two nodes for the data transmission. Thus, it forms a parent-child hierarchy.

Advantages of Tree topology

  • Support for broadband transmission: Tree topology is mainly used to provide broadband transmission, i.e., signals are sent over long distances without being attenuated.
  • Easily expandable: We can add the new device to the existing network. Therefore, we can say that tree topology is easily expandable.
  • Easily manageable: In tree topology, the whole network is divided into segments known as star networks which can be easily managed and maintained.
  • Error detection: Error detection and error correction are very easy in a tree topology.
  • Limited failure: The breakdown in one station does not affect the entire network.
  • Point-to-point wiring: It has point-to-point wiring for individual segments.

Disadvantages of Tree topology

  • Difficult troubleshooting: If any fault occurs in the node, then it becomes difficult to troubleshoot the problem.
  • High cost: Devices required for broadband transmission are very costly.
  • Failure: A tree topology mainly relies on main bus cable and failure in main bus cable will damage the overall network.
  • Reconfiguration difficult: If new devices are added, then it becomes difficult to reconfigure.

Mesh topology

Computer Network Topologies

  • Mesh technology is an arrangement of the network in which computers are interconnected with each other through various redundant connections.
  • There are multiple paths from one computer to another computer.
  • It does not contain the switch, hub or any central computer which acts as a central point of communication.
  • The Internet is an example of the mesh topology.
  • Mesh topology is mainly used for WAN implementations where communication failures are a critical concern.
  • Mesh topology is mainly used for wireless networks.
  • Mesh topology can be formed by using the formula:
    Number of cables = (n*(n-1))/2;

Where n is the number of nodes that represents the network.

Mesh topology is divided into two categories:

  • Fully connected mesh topology
  • Partially connected mesh topology

Computer Network Topologies

  • Full Mesh Topology: In a full mesh topology, each computer is connected to all the computers available in the network.
  • Partial Mesh Topology: In a partial mesh topology, not all but certain computers are connected to those computers with which they communicate frequently.

Advantages of Mesh topology:

Reliable: The mesh topology networks are very reliable as if any link breakdown will not affect the communication between connected computers.

Fast Communication: Communication is very fast between the nodes.

Easier Reconfiguration: Adding new devices would not disrupt the communication between other devices.

Disadvantages of Mesh topology

  • Cost: A mesh topology contains a large number of connected devices such as a router and more transmission media than other topologies.
  • Management: Mesh topology networks are very large and very difficult to maintain and manage. If the network is not monitored carefully, then the communication link failure goes undetected.
  • Efficiency: In this topology, redundant connections are high that reduces the efficiency of the network.

Hybrid Topology

Computer Network Topologies

  • The combination of various different topologies is known as Hybrid topology.
  • A Hybrid topology is a connection between different links and nodes to transfer the data.
  • When two or more different topologies are combined together is termed as Hybrid topology and if similar topologies are connected with each other will not result in Hybrid topology. For example, if there exist a ring topology in one branch of ICICI bank and bus topology in another branch of ICICI bank, connecting these two topologies will result in Hybrid topology.

Advantages of Hybrid Topology

  • Reliable: If a fault occurs in any part of the network will not affect the functioning of the rest of the network.
  • Scalable: Size of the network can be easily expanded by adding new devices without affecting the functionality of the existing network.
  • Flexible: This topology is very flexible as it can be designed according to the requirements of the organization.
  • Effective: Hybrid topology is very effective as it can be designed in such a way that the strength of the network is maximized and weakness of the network is minimized.

Disadvantages of Hybrid topology

  • Complex design: The major drawback of the Hybrid topology is the design of the Hybrid network. It is very difficult to design the architecture of the Hybrid network.
  • Costly Hub: The Hubs used in the Hybrid topology are very expensive as these hubs are different from usual Hubs used in other topologies.
  • Costly infrastructure: The infrastructure cost is very high as a hybrid network requires a lot of cabling, network devices, etc.

Comments

Popular posts from this blog

KEYBOARDING AND MOUSE SKILLS

Health and Safety Using ICT Tools